LiX Beamline Manual
(last revised 2016 Mar 20)

1. Controls

1.1) Introduction

Lix has four PC’s in the control room, three of them have linux system and one
windows. Data acquisition and hardware motion is primarily controlled by Bluesky
framework, it is driven by python objects and is basically a command line
interface. Additionally GUI screens are available created through control system
studio (css) to move the motors and or do simple counts.

1.2) Bluesky startup

To start a bluesky data acquisition session open a terminal window and login to
xf16idc-gpu1. Activate the session by “bsui”

In Ipython command line type login(), followed by username, proposal number
and folder name. This will create necessary folder and sets path for saving the
data. Data is usually saved in /GPFS/xf16id/exp_path/proposal number/folder
name/files

1.3) CSS screens

User interface for data collection and motion control is available through control
system studio. To launch css go to any terminal and execute “run-css” this will
launch LIX css main page



(15
File Edit Search Run CS-Studio Window Help

BHES A ATME % oA Quick Access 2 0PI Runtime

C5-Studio

& LiX Launch §3 @ Sl vG-m- =8

FE Vacuum 2GR ‘ Sl e ‘ whirror | A-UPS Cam .21
161D Vacuum HET DCH (Mono) A-DOWNS Cam .41
BPML KB mirrors B-UPS Cam 61

BPMZ SSAAltnt B-DOWNS Cam .81
Mechanical
Intens. Monl CRL (Lenses) Camera .82
Electrical

Intens.Mon2 KBMirror Test Axis cameras

CAENels BEST

j

[

Shutter |
FE slits ‘ FS:3 Mation Control EndStation Scan records
Vs

Li slits FS:4 Mation Control
£PS Utilties Q HRN2 SIICEIES
Comeres SAXS Beamstop Calc records 2

Sample Mounter

WAXS Det Stage

Flight Path Test

Detectors Live View

1

quadEM

Saturn

schodankar

It contains links to various interfaces such as detector screens, cameras and other
controls.

1.4) Basic Bluesky commands

All units are in mm or degrees by default.

A. High-throughput Solution scattering

Move the PCR tube holder:

sol.select_tube_pos('park') move the holder out for retrieval

Measure one sample

sol.measure(tn, vol=XX, tn: tube number (1-18)

exp=XX, repeats=XX, nd:needle, either 'upstream' or 'downstream'

sample_name='test’) vol: volume to measure, the actual loaded volume is vol +
sol.sample headroom, which is 13 ul by default but

can be revised




exp:exposure time, 5 sec is typical
repeats: number of scattering patterns to take from the sample
sample name:if the sample name is not given, 'test' is assumed

Other commands (not normally used by users)

sol.select_flow_cell(cn)

Cn should be one of 'top', 'middle' or 'bottom'.
This is done automatically when running sol.measure(), as
described below

sol.move_tube_holder(pos)

pos should be either 'up' or 'down', this is only allowed when
the tube holder is aligned with the sample needles

sol.select_tube_pos(pos)

Move the holder to tube #pos, pos=1-18, 1 is on the inboard
side; pos=0 is the drain

sol.wash_needle(nd,repeats=3,
dry_duration=55)

Washes needle (nd= upstream or downstream)

sol.prepare_to_load_sample(tn)

Prepares to load sample at position tn(1-18)

sol.load_sample(vol)

Loads sample in the position decided by prepare to load
sample command

sol.collect_data(vol, exp,
repeats, sample_name='test')

A given volume of sample is flown through the flow cell while
x-ray data is collected for n exposure secs and repeated for a
given amount.

sol.return_sample()

Sample is return back to pcr tubes

Interrupting Scans

A scan can be interrupted by pressing Ctrl+c twice.

What to do after interrupting

RE.resume() - to resume the scan back
RE.stop() - to state the scan is successful and come out of the measurement

RE.abort() - to abort the scan

Executing a batch file




A batch file can be runned to measure a sequence of samples using command
“%run -i /IGPFS/Commissioning/folder_path/filename”

A typical example for a batch file is
sol.measure(2,vol=45,exp=5,repeats=3,sample_name="sample1")
sol.measure(4,vol=45,exp=5,repeats=3,sample_name="sample2")
sol.select_tube _pos("park”)

B. In-line size exclusion chromatography

Software controlling HPLC setup is installed on a separate windows computer. Therefore HPLC
x-ray data collection is two part process, executing the hplc parameters on the windows
computer and starting the sample elution.

On linux machine data collection is synchronized by executing command
“collect_hplc(“sample_name”,exp)”

This will send the signal to the HPLC machine that beamline is ready for data acquisition, on
receiving the command HPLC software starts the pretreatment and running the sample as soon
as the sample starts to flow, a second signal is send for starting the data collection at beamline
side.

The pressure difference between the column to the x-ray flow cell can cause the soluble gas in
the buffer to release giving rise to bubbles in the flow cell. HPLC flow cell is equipped with a
bubble remover tool. Currently the process is not automatized, so the user has to keep an eye
on the image as soon as the bubble appears it can be sucked out using the following command
“sol.ctrl.sv_bubble.put(n)”

n of 1 or 2 is enough to remove the bubble a higher number can be problematic as it would suck
up the sample too.

Triggering data collection manually
Use the following command
caput(XF:16IDC-ES:Sol{ctrl}HPLC_bypass, 1)

Data processing

Users can download the pyXS library needed for re-processing their data from the beamline
Google Drive: https://drive.google.com/drive/folders/0B55zDKEfszcwdThzU1dONFhfOHc .



https://drive.google.com/drive/folders/0B55zDKEfszcwdThzU1d0NFhfOHc

pyXS is a collection of python scripts for processing x-ray scattering data. Compared to its
original version from NSLS beamline X9, it now can deal with data from more than two detectors
that collect data simultaneously. For compatibility with the Pilatus detectors at LiX, pyXS is now
using FablO to read image files. We are also migrating to python3, with the rest of NSLS-II.

In order for pyXS to run on your computer, you will need the essential python modules such as
PIL/pillow, numpy and matplotlib. The easiest way to get all necessary python modules in one
shot is to get Anaconda (https://www.continuum.io/downloads), which includes most modules
already. If you are worried about disk space, install Miniconda
(http://conda.pydata.org/miniconda.html) instead, in which case you will need to install additional
modules after conda is installed:

conda install numpy scipy matplotlib pillow ipython-notebook

FablO is not initially installed under Anaconda. You can install it using pip:
pip install fabio

Once you unpack pyXS, run the following command within the pyXS directory:
python setup.py install

This will install pyxs into the site-packages directory so that python can find it when you import
pyxs from your script. The real space-reciprocal space conversion within pyXS is performed by
code written in C. The RQconv module may need to be compiled, if the binary has not been built
(the distribution contains binaries for Linux and Windows, 64-bit python 3.5). The setup script
will compile the RQconv module as well. But for that to work you will need swig (can be installed
by anaconda) and an appropriate compiler. This should not be an issue for Linux and Mac. For
Windows the C/C++ compiler can be downloaded from
http://landinghub.visualstudio.com/visual-cpp-build-tools .

The distribution (under pyXS/Example) contains example data and an ipython notebook for
processing them. To start ipython notebook, simply run “ipython notebook” or “jupyter notebook”
from a terminal, or command prompt for Windows. This will open a browser showing files in the
local directory. Therefore it may be a good idea to start ipython from a directory under which the
notebook is located.


http://landinghub.visualstudio.com/visual-cpp-build-tools

